9900 Instruction Set

9900 INSTRUCTION SET

DEFINITION

Each 9900 instruction performs one of the following operations:

- Arithmetic, logical, comparison, or manipulation operations on data
- Loading or storage of internal registers (program counter, workspace pointer, or status)
- Data transfer between memory and external devices via the CRU
- Control functions.

ADDRESSING MODES

The 9900 instructions contain a variety of available modes for addressing random-memory data (e.g., program parameters and flags), or formatted memory data (character strings, data lists, etc.). The following figures graphically describe the derivation of the effective address for each addressing mode. The applicability of addressing modes to particular instructions is described in the Instructions Section along with the description of the operations performed by the instruction. The symbols following the names of the addressing modes [R, *R, *R+, (a) LABEL, or (a) TABLE (R)] are the general forms used by 9900 assemblers to select the addressing mode for register R.

WORKSPACE REGISTER ADDRESSING R

Workspace Register R contains the operand.

WORKSPACE REGISTER INDIRECT ADDRESSING *R

Workspace Register R contains the address of the operand.

WORKSPACE REGISTER INDIRECT AUTO INCREMENT ADDRESSING *R+

Workspace Register R contains the address of the operand. After acquiring the operand, the contents of workspace register R are incremented.

Symbolic (Direct) Addressing @LABEL

The word following the instruction contains the address of the operand.

INDEXED ADDRESSING @ TABLE (R)

The word following the instruction contains the base address. Workspace register R conatins the index value. The sum of the base address and the index value results in the effective address of the operand.

IMMEDIATE ADDRESSING

The word following the instruction contains the operand.

PROGRAM COUNTER RELATIVE ADDRESSING

The 8-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the updated contents of the program counter. The result is placed in the PC.

CRU RELATIVE ADDRESSING

The 8-bit signed displacement in the right byte of the instruction is added to the CRU base address (bits 3 through 14 of the workspace register 12). The result is the CRU address of the selected CRU bit.

TERMS AND DEFINITIONS

The following terms are used in describing the instructions of the 9900:

TERM	DEFINITION						
В	Byte indicator (1=byte, 0 = word)						
с	Bit count						
D	Destination address register						
DA	Destination address						
IOP	Immediate operand						
LSB(n)	Least significant (right most) bit of (n)						
MSB(n)	Most significant (left most) bit of (n)						
N	Don't care						
PC	Program counter						
Result	Result of operation performed by instruction						
S	Source address register						
SA	Source address						
ST	Status register						
STn	Bit n of status register						
т _D	Destination address modifier						
Τ _S	Source address modifier						
W	Workspace register						
WRn	Workspace register n						
(n)	Contents of n						
a→b	a is transferred to b						
ln l	Absolute value of n						
+	Arithmetic addition						
-	Arithmetic subtraction						
AND	Logical AND						
OR	Logical OR						
\oplus	Logical exclusive OR						
n	Logical complement of n						

STATUS REGISTER

The status register contains the interrupt mask level and information pertaining to the instruction operation.

<i>~</i> ~~	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
s	то	ST1	ST2	ST3	ST4	ST5	ST6		not	used	(=0)		ST 12	ST13	ST14	ST 15
I	.>	A >	=	С	0	Р	x						1	nterrup	ot Mask	:

BIT	NAME	INSTRUCTION	CONDITION TO SET BIT TO 1
STO	LOGICAL	С,СВ	If MSB(SA) = 1 and MSB(DA) = 0, or if MSB(SA) = MSB(DA)
	GREATER		and MSB of $[(DA)-(SA)] = 1$
	THAN	СІ	If MSB(W) = 1 and MSB of IOP = 0, or if MSB(W) = MSB of 10P and MSB of [10P-(W)] = 1
		ABS	If $(SA) \neq 0$
		All Others	lf result ≠ 0
ST1	ARITHMETIC	C,CB	If MSB(SA) = 0 and MSB(DA) = 1, or if MSB(SA) = MSB(DA)
	GREATER		and MSB of [(DA)-(SA)] = 1
	THAN	CI	If MSB(W) = 0 and MSB of IOP = 1, or if MSB(W) = MSB of
			IOP and MSB of $[IOP-(W)] = 1$
		ABS	If MSB(SA) = 0 and (SA) \neq 0
		All Others	If MSB of result = 0 and result \neq 0

9900 INSTRUCTION SET

BIT	NAME	INSTRUCTION	CONDITION TO SET BIT TO 1
ST2	EQUAL	C, CB	If (SA) = (DA)
		C1	If (W) = IOP
		coc	If (SA) and $(\overline{DA}) = 0$
		czc	If (SA) and (DA) = 0
		тв	If CRUIN = 1
		ABS	If (SA) = 0
		All others	If result = 0
ST3	CARRY	A, AB, ABS, AI, DEC,	
	}	DECT, INC, INCT,	If CARRY OUT ≈ 1
		NEG, S, SB	
		SLA, SRA, SRC, SRL	If last bit shifted out = 1
ST4	OVERFLOW	А, АВ	If MSB(SA) = MSB(DA) and MSB of result \neq MSB(DA)
		Al	If MSB(W) = MSB of IOP and MSB of result \neq MSB(W)
		S, SB	If MSB(SA) \neq MSB(DA) and MSB of result \neq MSB(DA)
		DEC, DECT	If MSB(SA) ≈ 1 and MSB of result = 0
		INC, INCT	If MSB(SA) = 0 and MSB of result = 1
		SLA	If MSB changes during shift
		DIV	If $MSB(SA) = 0$ and $MSB(DA) = 1$, or if $MSB(SA) = MSB(DA)$
			and MSB of $[(DA)-(SA)] = 0$
		ABS, NEG	If (SA) = 8000 ₁₆
ST5	PARITY	CB, MOVB	If (SA) has odd number of 1's
		LDCR, STCR	If $1 \le C \le 8$ and (SA) has odd number of 1's
	1	AB, SB, SOCB, SZCB	If result has odd number of 1's
ST6	XOP	XOP	If XOP instruction is executed
ST12-ST15	INTERRUPT	LIMI	If corresponding bit of IOP is 1
	MASK	RTWP	If corresponding bit of WR15 is 1

The TMS 9940 has a slightly different arrangement of its status register. Note that the first six status bits are the same as for the TMS 9900.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
STO L>	ST1 A>	ST2 =	ST3 C	ST4 O	ST5 P	not used (= 0)	ST7 DC		1	10t use	d (=0)			ST14 INTER MASK	ST15 IRUPT

ST7	DIGIT CARRY	A,ABS,AI,DEC, DECT,INC,INCT NEG.S	If carry out of least significatn BCD Digit of most significant byte = 1
		AB,DCA,DCS,SB	If carry out of least significant BCD Digit = 1
ST14-ST15	INTERRUPT MASK	LIIM LIMI RTWP	If corresponding bit of S is 1 If corresponding bit of IOP is 1 If corresponding bit of WR 13 is 1

INSTRUCTIONS

DUAL OPERAND INSTRUCTIONS WITH MULTIPLE ADDRESSING MODES FOR SOURCE AND DESTINATION OPERAND

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:			DE	В	т	D		D			т	s		s		

If B=1 the operands are bytes and the operand addresses are byte addresses. If B=0 the operands are words and the operand addresses are word addresses.

The addressing mode for each operand is determined by the T field of that operand.

T _S OR T _D	S OR D	ADDRESSING MODE	NOTES
00	0, 1, 15	Workspace register	1
01	0, 1, 15	Workspace register indirect	
10	0	Symbolic	4
10	1, 2, 15	Indexed	2,4
11	0, 1, 15	Workspace register indirect auto-increment	3

Notes: 1. When a workspace register is the operand of a byte instruction (bit 3 = 1), the left byte (bits 0 through 7) is the operand and the right byte (bits 8 through 15) is unchanged.

- 2. Workspace register 0 may not be used for indexing.
- 3. The workspace register is incremented by 1 for byte instructions (bit 3=1) and is incremented by 2 for word instructions (bit 3=0).

4. When $T_s = T_D = 10$, two words are required in addition to the instruction word. The first word is the source operand base address and the second word is the destination operand base address.

MNEMONIC	OP	cc	DDE	в		RESULT	STATUS	
MINEMONIC	0	1	2	3	MEANING	COMPARED	BITS	DESCRIPTION
						TOO	AFFECTED	
A	1	0	1	0	Add	Yes	0-4	$(SA)+(DA) \rightarrow (DA)$
AB	1	0	1	1	Add bytes	Yes	0-5	(SA)+(DA) → (DA)
С	1	0	0	0	Compare	No	0-2	Compare (SA) to (DA) and set appropriate status bits
СВ	1	0	0	1	Compare bytes	No	0-2,5	Compare (SA) to (DA) and set appropriate status bits
s	0	1	1	0	Subtract	Yes	0-4	$(DA) - (SA) \rightarrow (DA)$
SB	0	1	1	1	Subtract bytes	Yes	0-5	(DA) – (SA) → (DA)
SOC	1	1	1	0	Set ones corresponding	Yes	0-2	(DA) OR (SA) → (DA)
SOCB	1	1	1	1	Set ones corresponding bytes	Yes	0-2,5	(DA) OR (SA) → (DA)
SZC	0	1	0	0	Set zeroes corresponding	Yes	0-2	(DA) AND (SA) → (DA)
SZCB	0	1	0	1	Set zeroes corresponding bytes	Yes	0-2,5	(DA) AND (SA) → (DA)
MOV	1	1	0	0	Move	Yes	0-2	$(SA) \rightarrow (DA)$
MOVB	1	1	0	1	Move bytes	Yes	0-2,5	$(SA) \rightarrow (DA)$

9900 INSTRUCTION SET

DUAL OPERAND INSTRUCTIONS WITH MULTIPLE ADDRESSING MODES FOR THE SOURCE OPERAND AND WORKSPACE Register Addressing for the Destination

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:			OP CC	DDE				D			т	้ร		5	3	

The addressing mode for the source operand is determined by the $T_{\rm s}$ field.

т _s	S	ADDRESSING MODE	NOTES
00	0, 1, 15	Workspace register	
01	0, 1, 15	Workspace register indirect	
10	0	Symbolic	
10	1, 2, 15	Indexed	1
11	0, 1, 15	Workspace register indirect auto increment	2

Notes: 1. Workspace register 0 may not be used for indexing. 2. The workspace register is incremented by 2.

MNEMONIC	OP CODE 0 1 2 3 4 5	MEANING	RESULT COMPARED TO 0	STATUS BITS AFFECTED	DESCRIPTION
сос	001000	Compare ones corresponding	No	2	Test (D) to determine if 1's are in each bit position where 1's are in (SA). If so, set ST2.
czc	001001	Compare zeros corresponding	No	2	Test (D) to determine if O's are in each bit position where 1's are in (SA). If so, set ST2.
XOR	001010	Exclusive OR	Yes	0-2	$(D) \bigoplus (SA) \rightarrow (D)$
МРҮ	001110	Multiply	No		Multiply unsigned (D) by unsigned (SA) and place unsigned 32-bit product in D (most significant) and D+1 (least significant). If WR15 is D, the next word in memory after WR15 will be used for the least significant half of the product.
DIV	001111	Divide	No	4	If unsigned (SA) is less than or equal to unsigned (D), perform no operation and set ST4. Otherwise, divide unsigned (D) and (D+1) by unsigned (SA). Quotient \rightarrow (D), remainder \rightarrow (D+1). If D = 15, the next word in memory after WR 15 will be used for the remainder.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:			OP CO	DE				D			т	s		S	3	

The T_s and S fields provide multiple mode addressing capability for the source operand. When the XOP is executed, ST6 is set and the following transfers occur:

 $(40_{16}+4D) \rightarrow (WP)$ $(42_{16}+4D) \rightarrow (PC)$ SA \rightarrow (new WR11) (old WP) \rightarrow (new WR 13) (old PC) \rightarrow (new WR 14) (old ST) \rightarrow (new WR 15)

The TMS 9900 does not test interrupt requests (\overline{INTREQ}) upon completion of the XOP instruction. The TMS 9980A/TMS 9981 tests for reset and load but does not test for interrupt requests (\overline{INTREQ}) upon completion of the XOP instruction.

The TMS 9940 has the same general format for extended operations as the TMS 9900 with the differences described below.

MNEMONIC	D FIELD 6 7 8 9	MEANING	RESULT COMPARED TO ZERO?	STATUS BITS AFFECTED	DESCRIPTION
DCA	0000	Decimal Correct Addition	Yes	0-3,5,7	The byte specified by SA is corrected to form 2 BCD digits as shown in Table 4
DCS	0001	Decimal Correct Subtraction	Yes	0-3,5,7	The byte specified by SA is corrected to form 2 BCD digits as shown in Table 4
LHM	001X	Load Interrupt Mask	No	14,15	Ts must equal 0. S, Bits 14 and 15 → ST 14 and ST 15.
XOP	0 1 X X 1 0 X X 1 1 X X	General XOP	No		$(40_{16} + 4D) \rightarrow (WP)$ $(42_{16} + 4D) \rightarrow (PC);$ $SA \rightarrow (New WR 11);$ $(Old WP) \rightarrow (New WR 13);$ $(Old PC) \rightarrow (New WR 14);$ $(Old ST) \rightarrow (New WR 15);$ Following execution of an XOP instruc- tion, the TMS 9940 inhibits interrupt levels 1,2, and 3 until one more instruc- tion is executed.

RESULT OF DCA AND DCS INSTRUCTIONS

7 8-BIT BYTE CONTAINING RESULT OF BINARY ADD OR SUBTRACT OF 2 BCD DIGITS

B	YTE BEFORE	EXECUTI	ON		BYTE AFT	ER DCA		BYTE AFTER DCS						
C	х	DC	Y	С	Х	DC	Y	С	X	DC	Y			
0	X<10	0	Y<10	0	X	0	Y	-		_	-			
0	X<10	1	Y<10	0	х	0	Y+6		-	_	-			
0	X<9	0	Y≥10	0	X + 1	1	Y+6	-	-	-	-			
1	X<10	0	Y<10	1	X + 6	0	Y	-	- 1	-	-			
1	X<10	1	Y<10	1	X + 6	0	Y16	-		—				
1 1	X<10	0	Y≥10	1	X + 7	1	Y+6	-	-		-			
0	X≥10	0	Y<10	1	X + 6	0) Y	- 1	! '	-) (
0	Z≥10	1	Y<10	1	X+6	0	Y+6) —	—		-			
0	X≥9	0	Y≥10	1	X + 7	1	Y+6	-	-	-				
0	х	0	Y	-	—	-	- 1	0	X + 10	1	Y + 10			
0	X	1	Y	~	_			0	X + 10	0	Ý			
1	x	0	Y		-		- 1	1	X	1	Y + 10			
1	х	1	Y					1	X	0	Y			

SINGLE OPERAND INSTRUCTIONS

The $T_{\rm S}$ and S fields provide multiple mode addressing capability for the source operand.

Product Data Book

MNEMONIC	OP CODE	MEANING	RESULT COMPARED	STATUS BITS	DESCRIPTION
	0123456789		то 0	AFFECTED	
В	0000010001	Branch	No	-	$SA \rightarrow (PC)$
BL	0000011010	Branch and link	No		$(PC) \rightarrow (WR11); SA \rightarrow (PC)$
BLWP	0000010000	Branch and load	No	-	$(SA) \rightarrow (WP); (SA+2) \rightarrow (PC);$
ļ		workspace pointer			(old WP) \rightarrow (new WR 13);
					(old PC) → (new WR14);
					(old ST) → (new WR15);
					the interrupt input (INTREQ) is not
					tested upon completion of the
					BLWP instruction.
					The TMS 9980A / TMS 9981 tests for
	I				reset and load but does not test for
					interrupt requests (INTREQ) upon
					completion of the XOP instruction.
CLR	0000010011	Clear operand	No		0 → (SA)
SETO	0000011100	Set to ones	No	-	FFFF ₁₆ →(SA)
INV	0000010101	Invert	Yes	0-2	$(\overline{SA}) \rightarrow (SA)$
NEG	0000010100	Negate	Yes	0-4	-(SA) → (SA)
ABS	0000011101	Absolute value*	No	0-4	(SA) → (SA)
SWPB	0000011011	Swap bytes	No	~	(SA), bits 0 thru 7 \rightarrow (SA), bits
					8 thru 15; (SA), bits 8 thru 15 →
					(SA), bits 0 thru 7.
INC	0000010110	Increment	Yes	0-4	$(SA) + 1 \rightarrow (SA)$
INCT	0000010111	Increment by two	Yes	0-4	(SA) + 2→(SA)
DEC	0000011000	Decrement	Yes	0-4	(SA) – 1 → (SA)
DECT	0000011001	Decrement by two	Yes	0-4	(SA) - 2→ (SA)
X†	0000010010	Execute	No	-	Execute the instruction at SA.

* Operand is compared to zero for status bit.

[†] If additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAQ) will not be true when the 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

CRU MULTIPLE-BIT INSTRUCTIONS

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:			OP C	ODE				с			т	s		5	;	

The C field specifies the number of bits to be transferred. If C=0, 16 bits will be transferred. The CRU base register (WR 12, bits 3 through 14) defines the starting CRU bit address. The bits are transferred serially and the CRU address is incremented with each bit transfer, although the contents of WR 12 is not affected. T_s and S provide multiple mode addressing capability for the source operand. If 8 or fewer bits are transferred (C=1 through 8), the source address is a byte address. If 9 or more bits are transferred (C=0, 9 through 15), the source address is a word address. If the source is addressed in the workspace register indirect auto increment mode, the workspace register is incremented by 1 if C=1 through 8, and is incremented by 2 otherwise.

9900 INSTRUCTION SET

MICHONIO			MEANING	RESULT COMPARED	STATUS BITS	DESCRIPTION
MINEMONIC	01234	5	MEANING	TO 0	AFFECTED	
LDCR	00110	0	Load communcation register	Yes	0-2,5†	Beginning with LSB of (SA), transfer the specified number of bits from (SA) to the CRU.
STCR	00110	1	Store communcation register	Yes	0-2,5†	Beginning with LSB of (SA), transfer the specified number of bits from the CRU to (SA). Load unfilled bit positions with 0.

[†]ST5 is affected only if $1 \le C \le 8$.

CRU SINGLE-BIT INSTRUCTIONS

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC	DE						SIGNE	DDIS	PLACE	MENT		

CRU relative addressing is used to address the selected CRU bit.

MNEMONIC	OP CODE 0 1 2 3 4 5 6 7	MEANING	STATUS BITS AFFECTED	DESCRIPTION
SBO	00011101	Set bit to one		Set the selected CRU output bit to 1.
SBZ	00011110	Set bit to zero	-	Set the selected CRU output bit to 0.
ТВ	00011111	Test bit	2	If the selected CRU input bit = 1, set ST2.

JUMP INSTRUCTIONS

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC	DE						D	SPLAC		JT		

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits of ST are at specified values. Otherwise, no operation occurs and the next instruction is executed since PC points to the next instruction. The displacement field is a word count to be added to PC. Thus, the jump instruction has a range of -128 to 127 words from memory-word address following the jump instruction. No ST bits are affected by jump instruction.

Product Data Book

MNEMONIC	OP CODE		
MINEMONIC	0 1 2 3 4 5 6 7	MEANING	ST CONDITION TO LOAD PC
JEO	0 0 0 1 0 0 1 3	Jump equal	ST2 = 1
JGT	0 0 0 1 0 1 0 1	Jump greater than	S⊤1 ≂ 1
JH	0 0 0 1 1 0 1 1	Jump high	ST0 = 1 and ST2 = 0
JHE	0 0 0 1 0 1 0 0	Jump high or equal	STO = 1 or ST2 = 1
JL	0 0 0 1 1 0 1 0	Jump low	ST0 = 0 and $ST2 = 0$
JLE	00010010	Jump low or equal	STO = 0 or ST2 = 1
JLT	00010001	Jump less than	ST1 = 0 and $ST2 = 0$
JMP	0 0 0 1 0 0 0 0	Jump unconditional	unconditional
JNC	0 0 0 1 0 1 1 1	Jump no carry	ST3 = 0
JNE	0 0 0 1 0 1 1 0	Jump not equal	ST2 = 0
ONL	0 0 0 1 1 0 0 1	Jump no overflow	ST4 = 0
JOC	0 0 0 1 1 0 0 0	Jump on carry	ST3 = 1
JOP	0 0 0 1 1 1 0 0	Jump odd parity	ST5 = 1

SHIFT INSTRUCTIONS

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:				OP CC	DE					С				v	V	

If C=0, bits 12 through 14 of WR0 contain the shift count. If C=0 and bits 12 through 15 of WR0=0, the shift count is 16.

MNEMONIC			c	P C	:01	DE	-			RESULT	STATUS	
	0	1	2	3	4	5	6	7	MEANING	COMPARED TO 0	BITS	DESCRIPTION
SLA	0	0	0	0	1	0	1	0	Shift left arithmetic	Yes	0-4	Shift (W) left. Fill vacated bit positions with 0.
SRA	0	0	0	0	1	0	0	0	Shift right arithmetic	Yes	0-3	Shift (W) right. Fill vacated bit positions with original MSB of (W).
SRC	0	0	0	0	1	0	1	1	Shift right circular	Yes	0-3	Shift (W) right. Shift previous LSB
SRL	0	0	0	0	1	0	0	1	Shift right logical	Yes	0-3	into MSB. Shift (W) right. Fill vacated bit positions with O's.

IMMEDIATE REGISTER INSTRUCTIONS

	0	1	2	3	4	_ 5	6	7	8	9	10	11	12	13	14	15
General format:	L				. 0	P COD	E					N		v	v	
	L								IOP							

MNEMONIC				c	DP	C	or	DE							RESULT	STATUS	
	0	1	2	3	3 4	1	5	6	7	8	9	10		MEANING	COMPARED TO 0	BITS	DESCRIPTION
AI	0	0	0	C) () (0	1	0	0	0	1		Add immediate	Yes	0-4	$(W) + IOP \rightarrow (W)$
ANDI	0	0	0	C) () (0	1	0	0	1	0	1	AND immediate	Yes	0-2	(W) AND IOP \rightarrow (W)
CI	0	0	0	C) () (0	1	0	1	0	0		Compare	Yes	0-2	Compare (W) to IOP and set
														immediate			appropriate status bits
LI	0	0	0	C) () (D	1	0	0	0	0	- {	Load immediate	Yes	0-2	$(OP \rightarrow (W))$
ORI	0	0	0	0) () (0	1	0	0	1	1		OR immediate	Yes	0-2	(W) OR IOP \rightarrow (W)

9900 INSTRUCTION SET

INTERNAL REGISTER LOAD IMMEDIATE INSTRUCTIONS

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CO	DDE							N		
General Ionnat.	L.							IOP								

MUEMONIO					C	DP (со	DE						
MNEMONIC	0	1	1	2	3	4	5	6	7	8	9	10	MEANING	DESCRIPTION
LWPI	0	C)	0	0	0	0	1	0	1	1	1	Load workspace pointer immediate	$IOP \rightarrow (WP)$, no ST bits affected
LIMI	0	C)	0	0	0	0	1	1	0	0	0	Load interrupt mask	IOP, bits 12 thru 15→ST12
														thru ST15

INTERNAL REGISTER STORE INSTRUCTIONS

	0	1	2	3	-	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CO	DDE					N		v		

No ST bits are affected.

MNEMONIC				C	IP C	:00	DE						
MINEMONIC	0	1	2	3	4	5	6	7	8	9	10	MEANING	DESCRIPTION
STST	0	0	0	0	0	0	1	0	1	1	0	Store status register	$(ST) \rightarrow (W)$
STWP	0	0	0	0	0	0	1	0	1	0	1	Store workspace pointer	$(WP) \rightarrow (W)$

RETURN WORKSPACE POINTER (RTWP) INSTRUCTION

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:	0	0	0	0	0	0	1	1	1	0	0			N		

The RTWP instruction causes the following transfers to occur:

 $(WR 15) \rightarrow (ST)$ $(WR 14) \rightarrow (PC)$ $(WR 13) \rightarrow (WP)$

EXTERNAL INSTRUCTIONS

	0	1	2	3	4	5	6	8	9	10	11	12	13	14	15
General format:						OP CC	DE						N		

External instructions cause the three most-significant address lines (A0 through A2) to be set to the below-described levels and the CRUCLK line to be pulsed, allowing external control functions to be initiated.

MNEMONIC	OP CODE	MEANING	STATUS BITS	DESCRIPTION		DRE BUS	SS
	0 1 2 3 4 5 6 7 8 9 10		AFFECTED		AO	A1	A2
IDLE	00000011010	Idle		Suspend TMS 9900	L	н	L
				instruction execution until			
				an interrupt, LOAD, or			
				RESET occurs			
RSET	00000011011	Reset	12-15	0 → ST12 thru ST15	L	н	н
CKOF	00000011110	User defined		_	н	н	L
CKON	00000011101	User defined			н	L	н
LREX	00000011111	User defined			н	н	н

Idle Instruction - TMS 9940

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
General format:						OP CC	DE							N		

The IDLE instruction stops the TMS 9940 until an interrupt or $\overline{\text{RESET}}$ occurs. See the *Power Down* section for use of the IDLE instruction.