Description of F9010

Document Last Updated: January 03, 2002.

This document was updated to correct spelling errors, reform the text, and to convert it into Microsoft Word.

Description of F9010

Your new F9010 language compiler is used to convert your English language Guided Fault Isolation programs into the internal Fluke (t) F9010a tokenized language.

After you have written your programs with a text editor, you run your program through the F9010 compiler. To do this, at the A0>, you enter “F9010 FILENAME.EXT” and hit your [RETURN] key. (Note that the “FILENAME.EXT” is the file name containing your program to compile.

After the compile has taken place, the result of your compile gets placed into a file that has the same file name but with a .FLK extension. (As with the above example, the result file name would be “FILENAME.FLK”).

You use the program called “IBMFLUKE” to transfer your .FLK file to the F9010a micro-tester. (For more information on “IBMFLUKE”, read the section titled “How IBMFLUKE works”). There’s also a program called FLUKE.COM that can be used with Z80 CP/M based machines to accomplish the same purpose.

While You Compile

If you wish to capture the results of the compilation as your source is being compiled, simply redirect the standard output to a temporary file and then observe the file. That would look something like this:

f9010 memory.dat > test.txt

When you observe the contents of test.txt, you’ll see what the compiler did and, if there were any errors, where the compiler died.

Command Syntax

You are allowed to place more than one command on a line if you want to, with the exception of LABLES and MACRO calls. To do this, you may delimit your statements with the “|” character. Any code that follows a :REMark statement gets ignored. You should also not use any of the compiler directives in a “Stacked” format.

You may place your code in a “Free Form” format, allowing any number of spaces and tabs within your code.

Special Options

There are many special options that you may employ in your program that would not be available by using the F9010a keyboard. When the code gets compiled, the compiler takes these options and converts them into the normal F9010a code.

1. Binary numbers are allowed.

2. ASCII character equates is supported.

3. Macros are available.

4. PRINT statements are available.

5. Block remarks using PL1 type /* and */ delimiters

6. For/Next loops are very useful.

7. Symbolic program names are allowed.

8. Symbolic variables are supported.

9. Automatic program number equates are available.

10. More than one statement on a single line, (Stacked code).

11. Poke assembly code into UUT RAM by offering compiler data

12. Poke executable code into UUT RAM by offering file name

13. 32 bit unsigned integer add

14. Frequency counter using the probe

15. Decimal numbers (From 0 to 255)

16. Conditional execution (IF/THEN/ELSE)

17. 10,000 8-bit element array for additional registers

18. Z80 Assembly Language in-line code (Binary programs)

For all of these special options you will need to read this text completely. All of the above options are not available through the normal F9010a keyboard and as such are not documented within any of John Fluke Manufacturing’s publications.

Bug Notice

There are bugs in this software that have not been looked into and fixed. Basically, if you simplify your source code before you compile it, crashing type bugs will go away. Since this project wasn’t funded, it’s unlikely that these bugs will ever be fixed.

Binary numbers

If you want to use a binary value in your program, you must follow the strict binary format. You must group your binary numbers in blocks of 8 bits. Here are some formats for binary numbers:

REG1 = (00001111B)

REG1 = (00000010B) (10001000B)

REG1 = (00110001B) (10100110B) (11101100B) (11110000B)

In the above examples, all binary values are going to be equated to REGister 1. The first binary value is an 8-bit value, the second is a 16-bit value, and the third is a 32 bit binary value. There is no limit on the number of binary digits you offer other than the fact that the micro-tester can only support a 32 bit wide numeric value.

You may use binary values anywhere you want to. You can use them in IF statements as well as any statement that requires a numeric value.

ASCII Characters

You have the ability to equate a REGister with the ASCII value of a letter. You may also use ASCII values in IF statements, as well as anywhere a numeric value is required.

The format for the use of ASCII values is as follows:

REG1 = 'Y'

IF REG1 = 'Y' GOTO 1

REG1 = 'Y' AND REGE

For the above examples, the ‘Y’ argument will be converted into its ASCII value. With the first example, REGister 1 will contain the result of the ASCII conversion. On the second example, REGister 1 is compared with the ASCII value of ‘Y’ and if they are equal, control is jumped to label 1. In the last example, the ASCII value of Y gets a logical AND done with REGister E and the result gets placed into REGister 1.

Macro Definitions

If you have a block of code that shows up in your program more than once, you may write the code once, then give it a symbolic name. Now every time you use that symbolic name, the code will be inserted.

You should not have labels in your macros due to the fact that you would be creating a duplicated label error if you did. You also may not have a macro within your macro. (NOTE: If you do in fact use a label in a macro, the compiler won’t complain about it. If you use that macro more than once, however, you’ll get a duplicate label error.)

The format for the definition of a macro is as follows:

:MACRO SYMBOLIC.MACRO.NAME

 DISPLAY HERE I AM INSIDE MACRO $1

 STOP

 READ AAAA

:ENDMACRO

The above :MACRO keyword is the start of the macro. The words “SYMBOLIC.MACRO.NAME” is the name of the macro. The :ENDMACRO is the end of the macro. To invoke the macro, simply use the name with a “:” before it. Here is an example:

DISPLAY GOING TO MACRO

:SYMBOLIC.MACRO.NAME

DISPLAY WE HAVE RUN THE MACRO

The above example will display the words “GOING TO MACRO. It will then execute the macro defined above which will itself display a message, stop, read address AAAA, then return to display the words “WE HAVE RUN THE MACRO”.

Macro names may be as long as you want. Don’t attempt to duplicate a macro name or the compiler will give you an error message. You may use any characters you want with the exception of a space in your symbolic name.

You may pass parameters to macros. Here’s an example of how parameters could be used:

:macro fill.memory #starting #ending #fill.character

 :for reg1 = starting to ending at 1

 write reg1 fill.character

 :next

:end macro

The above will define “fill.memory” and you would use this macro by using something like the following:

:fill.memory 0000 1fff 2a

:fill.memory 2000 2fff “X”

:fill.memory 3000 3fff (1111000b)

If you fail to provide all of the arguments to these types of macros, the compiler will make some assumptions and will generate code accordingly.

PRINT Statements

If you have a device memory mapped at an address and would like to send a string of characters to the device, use the PRINT statement. It will take an address, and a string of characters or words, and make a block of WRITE statements using that address.

The PRINT statements format looks like this:

PRINT [FC01] "This is the code that I want to send."

PRINT [VIDEO-PORT] "This data will be sent to the video."

In the above examples, the text contained within the quotes will be converted to ASCII, and the result written to address FC01 or address VIDEO-PORT one at a time until all characters are sent.

You must enclose your address with the [] characters, and the text you want to send must be enclosed in quotation marks. Note also that you must program your device before sending it data.

Block Remarks

You may include block remarks in your code in addition to the usual :REM statements. Everything after the /* characters and before the */ characters will be ignored by the compiler. This would allow you to add comments to your code which look something like this:

/* This is a test of clock remarks to see

 if the block remark feature actually works */

This feature also allows you to block out sections of your code while you’re debugging it.

For/Next Statements

The :FOR and :NEXT statements allow you to create a section or block of code that will be repeated for the number of times you select. These statements create a forward counter and a backwards counter, a label, and a conditional branch statement.

The format for the :FOR and :NEXT statements look like this:

:FOR REG1 = 1 TO 10 AT 1

DISPLAY HERE WE ARE WITHIN A LOOP $1

STOP

:NEXT

The above code will look like this after it has compiled:

REG1 = 1

REGD = 10

LABEL 1

DISPLAY HERE WE ARE WITHIN A LOOP $1

STOP

INCREMENT REG1

DECREMENT REGD

IF REGD > 0 GOTO 1

Note that you offer the register that will be used for the forward counter, the starting value, the ending value, and the label number. The compiler will use REGD as the backward counter. If you attempt to use REGD as your forward counter the compiler will abort with an error message.

You may use variables as your starting and ending count and you may also use a variable as your label number.

:FOR REG2 = STARTING.COUNTER TO ENDING.COUNTER AT LOOP.LABEL

DISPLAY HERE WE ARE WITHIN A LOOP $1

STOP

:END

Don’t offer a label that has already been used. If you attempt to do so, the compiler will abort with an error message unless you have offered the duplicated label in the form of a variable name. If you do this, the error will show up when you move the program to the micro-tester and try to run it.

Symbolic Program Names

You may use a symbolic name for your programs. To do this, your compiler has the :EQUATE command. The format for assigning a symbolic name to a program module is as follows:

:EQUATE MAIN_ENTRY_POINT AS 0

:EQUATE OFFER_THE_MENU AS 1

:EQUATE READ_THE_PROBE AS 2

:EQUATE DISPLAY_PROBE_RESULT AS 3

Your symbolic names may be any length, containing any character you wish except a space. If you define a symbolic name that has been defined already, a duplicated program name error is offered and the compile will abort.

When you wish to execute the program module, you use your execute statement but offer it the symbolic name. You may also use the number if you want to. Example:

EXECUTE MAIN_ENTRY_POINT

EXECUTE 0

For the above example, program module number zero will be run.

The :EQUATE command will also allow the automatic sequencing of program numbers. For this information, read the following:

Automatic Program Sequencing

When you use the :EQUATE command, it is possible to have the compiler supply the next available program module number. To do this, the following syntax is used with the :EQUATE command:

:EQUATE MAIN_ENTRY_POINT AS :NEXT

:EQUATE OFFER_THE_MENU AS :NEXT

:EQUATE READ_THE_PROBE AS :NEXT

:EQUATE DISPLAY_PROBE_RESULT AS :NEXT

With the above examples, the “:NEXT” tells the compiler to find the next available program number, and equate the symbolic name to it. If you compile the above examples, main_entry_point will be program module number 0, ofer_the_menu will be one, and so on.

Take note that if you want to skip some program numbers, you may do so in the following way:

:EQUATE MAIN_ENTRY_POINT AS :NEXT

:EQUATE OFFER_THE_MENU AS :NEXT

:EQUATE READ_THE_PROBE AS 40

:EQUATE DISPLAY_PROBE_RESULT AS :NEXT

In the above example, main_entry_point will be zero, offer_the_-menu will be one, read_the_probe will be 40, and display_probe_result will be 41.

Symbolic Variables

You may assign a symbolic name a numeric value. Whenever you use the symbolic name in a command, the value contained within the variable gets used.

You are allowed any length variable name, with any characters with the exception of a space. If you attempt to define a symbolic name that has already been defined, you will get a duplicate variable name error and the compiler will abort.

Here are some possible syntaxes for the :VARIABLE statement:

:VARIABLE BAD_POWER_BIT = (01000000B)

:VARIABLE STARTING.ADDRESS = 0000

:VARIABLE ENDING.ADDRESS = FFFF

:VARIABLE ROM-SIGNATURE-FOR-CPU-IS = 179E

Note that you may offer binary numbers to variables, allowing you to mask out bits with a variable name rather than the actual numeric value.

Any of the normal Fluke commands may use a symbolic variable name.

Here are some examples of where variables may be used:

:VARIABLE BAD_POWER_SUPPLY_FOR_Z80 = (10000000B)

:PROGRAM 0

LABEL 2

 READ STATUS

 REG1 = REGE AND BAD_POWER_SUPPLY_FOR_Z80

 IF REG1 = BAD_POWER_SUPPLY_FOR_Z80 GOTO 1

 DISPLAY NOT IN POWER FAIL CONDITION

 STOP

LABEL 1

 DISPLAY WE ARE IN POWER FAIL CONDITION

 STOP

 GOTO 2

In the above sample program, symbolic variable name BAD_POWER_SUPPLY_FOR_Z80 gets equated to the value 80 (hex). Program zero is the start of the test program. The first thing done is the status of the unit under test gets placed into REGE with the READ STATUS. The next thing done is REG1 gets equated with REGE AND 80. The logical AND will mask out all other bits in the REGE. REG1, the result of the test, gets checked to see if it contains 80 (hex). If it does, the program jumps to label 1. If it does not, then there was no bit 80 set in the status so we print a pass message.

If the bit was set, we go to label 1 and display the error message and stop. When the operator hits continue, we try again.

More Than One Statement On A Single Line

You are allowed to place more than one statement or command on a line. To do this, delimit your statements or commands with the “|” character. You are allowed any number of statements on a line with the exception of LABEL and macro calls. All code after a :REMark gets ignored so you don’t want to include code after a :REMark.

Any of the commands that require a “:” character before it must also be on its own line. These are the commands that you are not allowed to “Stack” commands with:

:CODE

:RAM

:ROM If you stack any of these statements

:I/O with others, the micro-tester will not

:EQUATE accept your programs. They may run to

:VARIABLE a point then crash your F9010a without

:MACRO warning. (Don't stack these!)

:ENDMACRO

:REM

PROGRAM

LABEL

:(Macro calls)

The format for using the “|” delimiter looks something like this:

LABEL 1

 DISPLAY READING MEMORY | READ 0 | DISPLAY RESULT WAS $E | STOP

 DISPLAY NEXT MEMORY READ | READ 1 | DISPLAY RESULT WAS $E

 STOP | GOTO 1

The above code will be broken down into the following code:

LABEL 1

 DISPLAY READING MEMORY

 READ 0

 DISPLAY RESULT WAS $E

 STOP

 DISPLAY NEXT MEMORY READ

 READ 1

 DISPLAY RESULT WAS $E

 STOP

 GOTO 1

By placing more than one statement on a line, your compile will require less disk accesses that will result in a faster compile. In addition, readability of your code is greater if your layout is good.

Poke Statements

The compiler has the ability to take data offered on lines of code and poke them into the Unit Under Test’s RAM. In addition you may offer the file name of an executable, which the compiler will poke into RAM so that if you wanted to you could upload executables to your unit under test, and execute them.

Offering Poke Data Elements:

You start the poke sequence by equating the REGF register with the starting address of where you want the data to go and then the following poke statements containing data will be poked into that RAM with the address being automatically incrimented. This would look something like this:

:variable starting.address is 8c00

:program 0

 regf = starting.address

 poke c9, 12, 7c, 87, 13, 0, 0, a1, 6c, c9, 8c, 00

 poke 8, (00001110b), ff, a, halt, 0, ‘0’, 1, 2

 run starting.address

The above section of code will poke the data into addresses 8c00 on up and will then execute the code.

Offering Poke a File Name

You may offer a file name of an executable file and the compiler will get all of the data out of it and use it to build poke statements. Obviously the executable opcodes have to be for the CPU of the Unit Under Test you’re poking executables into otherwise it won’t run.

Assume you had the following program:

ORG 8C00

LD HL, FFFF

LD DE, EPROG

SBC HL, DE

PUSH HL

POP BC

LD HL, EPROG

LD DE, EPROG + 1

LD A,(AAH)

LDIR

HALT

EPROG: NOP

If you have assembled and linked this into an executable file called MEMFILL.COM, you could ask the compiler to load it into memory using something like the following:

:variable starting.address with 8c00

:program 0

 regf = starting.address

 poke [MEMFILL.COM]

 run starting.address

Note that when you’re done with POKE, REGF is left pointing to the next address that has been left un-poked. That means you can have a number of pokes following each other and you don'’ have to worry about REGF pointing unless you want to change addresses between pokes.

32 bit unsigned integer add

There is a + command which allows you to add 32 bit numbers. You have to consider the + character as though it were a program, interestingly enough, by equating the symbol to a program number. Then you can simply use the + character to add registers. This would look something like this:

:equate + as 7

 reg3 = reg1 + reg2

 reg3 = reg2 + reg1

NOTE: Only REG3 may be used on the left side, and only reg1 and reg2 can be used in the addition. No other registers are allowed in the 32 bit add routine because the Z80 code expects these registers to be used.

What that will do is equate the + symbol to program number 7. You could have used a variable name instead of the number 7, or you could use the :next command to assign the next available program number to a variable and then use the variable name. (Those two options are discussed elsewhere in this document.)

What the compiler does is it creates a program which contains Z80 opcodes that get run on the F9010a and it assigns the program to the number you offer. When you use the + character to add registers, the compiler creates code which will invoke the Z80 assembly language program residing in the F9010a, using the REG1 and REG2 argument registers you offered and assigning the result to the REG3 assignment register.

Normally only 16 bit numbers can be added by the F9010a since it’s Z80 based however this feature allows you to add 32 number using an embedded program which this compiler will insert into your compiled code.

Frequency counter using the probe

There is a FREQUENCY command that enables a frequency counter on the probe -- up to around 4 MHZ, any way. The compiler will insert assembly language code into your compiled code and when frequency requesting is done, the compiler will execute that code. The way the frequency counter is used would look something like this:

:equate frequency as :next

 execute frequency

The result of the frequency measurement will be placed into either REG0.or REGF depending upon which version of this compiler you have. It’s up to you to determine whether the frequency count goes into REG0 or REGF for your version of the compiler, I’m sorry to say. The example code provided here assumes that REG0 is the register which receives the value. You can simply do a test by displaying both REG0 and REGF, doing the FREQUENCY command, and then displaying REG0 and REGF again to see which one changed. After you know which register is used, make a note.

After you have equated “frequency” to a program number, to use the frequency counter, then, you could do something like this:

 execute frequency

 if REG0 > 1860000 goto 1

 display CLOCK LOOKS BAD

 goto 2

label 1

 display FREQUNCY LOOKS GOOD

label 2

Decimal numbers (From 0 to 255)

You can use decimal numbers in addition to HEX and binary. Decimal numbers start with the # symbol. An example use of this would be:

REG1 = #42

Any time you use a number, you can use # to denote that it’s decimal rather than HEX.

Conditional execution (IF/THEN/ELSE)

You can create conditional compiled code blocks using the “USING” keyword. This looks something like this:

USING 1 and 2. if reg1 = ff then reg9 = 0 else reg9 = 1

What this will do is the compiler will use labels 1 and 2 and will create a block of code that looks something like this:

 IF REG1 = FF GOTO 1

 REG9 = 1

 GOTO 2

LABEL 1

 REG9 = 0

LABEL 2

The ELSE is optional and note that an entire “USING” command has to be contained on a single line. You may apply multiple statements in a USING using the “|” symbol however they must all be on the same line. That would look something like this:

USING 1 and 2. if reg1 = ff then reg9 = 0 | reg1 = 0 else reg9 = 1 | reg1 = ff

10,000 8-bit element array for additional registers

There is a DIM INDEX(n) command that allows you to create an array of 8-bit registers. To use this feature, you wold first define a program number to assign to the dimensioning code that the compiler will insert into your compiled program, then you inform the compiler how much space to assign. This looks something like this:

:equate index :next

dim index(1000)

This code will assign the next available program number to the executable program called “index” and then the compiler will assign 1000 bytes of data space inside of the F9010a Digital Trouble Shooter to hold your 8-bit array elements. Only one DIM command may appear in a workspace. The maximum size of the array is 10,000 bytes.

To extract values from the array, you would do something like this:

reg9 = index(12)

reg9 = index(last.byte)

REG9 always has to be on the left side of the argument when you’re retrieving values from your array. To assign values to the array you would use something like this:

index(last.byte) = 42

index(17) = 8C

WARNING: The compiler will use REG8, REG9, and REGA for these operations and will over right anything you have in them.

Z80 Assembly Language in-line code (Binary programs)

There is a BINARY command that allows you to insert re-locatable Z80 assembly language code into the F9010a Digital Trouble Shooter. This would look something like this:

:binary 7

 8c 12 7f f5 42

 32 44 18 73

This code will create a program number 7 (you can use a variable name and you could use :next if you wish.) The binary values that follow are then inserted into that program. This continues until another compiler directive or program is defined.

NOTE: Don’t forget that the binary code you place into the F9010a has to be Z80 opcodes and that it must be re-locatable code! If there are hard-coded branches in your program, when it’s executed you’re going to crash the F9010a and you’ll have to cycle power on the device. If you perform stack operations within your code, you must make sure you clean up your stack before your code exits.

Fluke F9010a Micro-Tester Command Syntax

All of the following commands are documented in your Fluke Manuals and you should read them also. What is offered here are a short description of each, and an example of its usage.

 AND operation - Here are some of its syntaxes.

REG1 = REG1 AND FF0000

REG1 = FF AND REGE

The AND operation takes the value of two arguments and does a logical AND to them. As with the two examples, the result of the AND gets placed into REGister 1.

 Atog, Toggle-address - Here are some of its syntaxes.

ATOG A5A5 1

TOGGLE-ADDRESS A5A5 1

TOGGLE-ADDRESS 0100 BIT_TO_TEST

ATOG 0100 ADDRESS.BIT.SEVEN

The keywords ATOG and TOGGLE-ADDRESS may be used freely. The first numeric you offer is the address to use. The second value is the address bit number to toggle on and off. You may use a symbolic variable name for both of the numeric values.

 Auto-Test - Here is its syntax.

AUTO-TEST

This command executes a Bus-Test, a Rom-Test, and then a Ram- short on all of the attributes you have specified.

For more information on Bus-Test, Rom-Test, and Ram-Short, please read the sections that follows.

 Aux and its syntax.

AUX THIS IS A STRING OF CODE THAT WILL BE PLACED INTO THE RS232 AUX DUMPING REGISTER 1: $1, AND REGISTER 2: $2

The AUX command allows the user to send words through the RS232 serial port on the back of the F9010a, and onto a printer, screen, modem, or any other RS232 device.

You have some handshaking capability though it is rather limited in its functions. The AUX command also has the ability to send the entire ASCII character set to the remote device.

 Bus-Test - Here is its syntax.

BUS-TEST

This command will test you address, data, status, and control lines to see if any of them are tied low, high, or together. It will also report on power failure, active force signals, and active interrupt signals.

 Compliment - Here are some of its syntaxes.

REG1 = COMPLIMENT REGE

In this example, the contents of REGister E gets complimented and the result gets placed into REGister 1. When you compliment a numeric value, the number gets converted to binary. All the ones get set to zeros, all the zeros gets set to ones.

 Decrement - Here is its syntax.

DECREMENT REG1

In this example, the value contained within REGister 1 gets its value decrements (Its value is subtracted by one). The result of this decrementation gets place back into the original REGister.

 Display - Here are some of its syntaxes.

DISPLAY HIT CONTINUE TO START

DISPLAY HERE IS REG1 $1

DISPLAY WANT POWER FAIL TEST?1

The DISPLAY command allows you to display words with the LED display on the F9010a. You are also able to enter the answers to questions with the display command.

 Dtog, Toggle-Data - Here are some of its syntaxes.

DTOG A5A5 1

TOGGLE-DATA A5A5 1

TOGGLE-DATA 0100 BIT_TO_TEST

DTOG 0100 DATA.BIT.SEVEN

TOGGLE-DATA CONTROL CONTROL.BIT.SEVEN

The keywords DTOG and TOGGLE-DATA may be used freely. The first numeric you offer is the address to toggle at. The second value is the data bit to turn on and off. You may use a symbolic variable name for both of the numeric values.

 Execute - Here are some of its syntaxes.

EXECUTE 12

EXECUTE READ_THE_PROBE

With the first example, the control of the program gets placed with program module number 12. When program 12 is done, control returns to the program module which contained the EXECUTE command. On the second example, the symbolic program name READ_THE_PROBE is the program module number to be executed. For more information on symbolic program equates, read that section.

 Goto - Here are some of its syntaxes.

GOTO 7

IF REG1 = 0D GOTO 7

IF REG1 AND DATA_BIT_SEVEN = DATA_BIT_SEVEN GOTO 7

The GOTO command allows you to branch to another section of your program. It also is used as a keyword in conditional branches called "IF" statements. In all of the above examples, the result of the branch will go to label seven. For the last two examples, if the condition is true, the program control will branch to label 7. For more information on "IF" and "LABEL", read that section.

 I/O-Test - Here are some of its syntaxes.

I/O-TEST

I/O-TEST FC00 FC04 1F

I/O-TEST IO.START IO.END IO.BITS

The I/O-TEST command will test the derivability of data lines for the specified addresses. You may offer no address or bit patterns if you want to select the default I/O attributes. The above examples show the first as using all default I/O attributes. The second example will cause the testing of bit pattern 1F on all addresses from FC00 to FC04.

On the third example, the starting address, ending address, and bit pattern to test are all symbolic variable names.

 If - Here are some of its syntaxes.

IF REG1 = 1 GOTO 6

IF REG1 = REGE GOTO 6

IF REG1 = TEST.BIT.PATTERN GOTO 6

IF REG1 > 0A GOTO 7

The IF statement allows you to test the condition of any type operation you have requested, and branch to another section of your program if the result is equal, greater than, or not equal to your second argument. In the above examples, REGister 1 is used with the second argument to test a condition. In the first three, if REGister 1 is equal to the second argument, control of the program jumps to label 6. In the last example, if REGister 1 is greater than 0A, control will jump to label 7.

 Increment - Here is its syntax.

INCREMENT REG1

In this example, the value contained within REGister 1 gets its value incremented, (Its value is added by one). The result of this addition gets place back into the original REGister.

 Label - Here are some if its syntaxes.

LABEL 1

LABEL A

The label command allows you to place "Entry Points", within your code, to use at jump points for your GOTO statements. You are allowed 16 labels, numbered from 0 to F. You are not required to use them in order, and you may skip a number if you like.

 Learn - Here are some of its syntaxes.

LEARN

LEARN 0000 FFFF

LEARN STARTING.ADDRESS ENDING.ADDRESS

The LEARN command will enter into your unit under test and see where RAM, ROM, and I/O reside. If you don't offer a starting and ending address, the area of memory that will be looked at will be determined by your test pod. The default is all directly accessible memory.

The result of your learn gets placed into the "Attributes" section of the micro-tester. To view the results, use your "VIEW" keys. (Read "VIEW" outlined later.)

When done, any ROM it finds get a signature created for it. This signature gets placed in with the attributes. If any I/O was located, the bits that were found to be derivable are also placed in with the attributes.

When an attribute has been stored in the micro-tester, it becomes a default value for I/O-TEST, RAM-SHORT, RAM-LONG, and ROM-TEST.

 Loop - Here are some of its syntaxes.

READ 0 LOOP

READ MEMORY.ADDRESS LOOP

WRITE 10A5 12 LOOP

TOGGLE-ADDRESS A5AA 1F LOOP

The LOOP command will cause the execution of the command it gets placed next to until the operator hits the CONTINUE key on the F9010a keyboard. While the micro-tester is looping, the "LOOPING" light will be flashing on the micro-tester.

 Or - Here are some of its syntaxes.

REG1 = REG2 OR REG3

REG1 = 0F OR REGE

REG1 = REGE OR F0

IF REG1 OR REG2 = 0F GOTO 7

The OR statement does a logical OR on the two arguments you offer, and places the result into the destination REGister, except in the last example where the result of the OR gets equated to the number 0F and program control jumps to label 7 if true.

The OR command allows you to set bits on within REGisters.

 Probe, Read-Probe - Here are its syntaxes.

PROBE

READ-PROBE

When the PROBE or READ-PROBE command gets executed, the micro- tester will read the status of the probe tip and place the result of the read into REGister 0. Depending on what was at the end of the probe, and what the HIGH and LOW switches were locked to, REGister 0 will contain a 32 bit number which can be checked for any condition.

 Ram-Long - Here are some of its syntaxes.

RAM-LONG

RAM-LONG 0000 FFFF

RAM-LONG STARTING.ADDRESS ENDING.ADDRESS

The RAM-LONG test will execute Flukes built-in ram test on the addresses given. If you don't offer a starting and ending address, the RAM-LONG test will take the default attributes for RAM and use them for the starting and ending address.

 Ram-Short - Here are some of its syntaxes.

RAM-SHORT

RAM-SHORT 0000 FFFF

RAM-SHORT STARTING.ADDRESS ENDING.ADDRESS

The RAM-SHORT test will execute Flukes built-in ram test on the addresses given. If you don't offer a starting and ending address, the RAM-SHORT test will take the default attributes for RAM and use them for the starting and ending address.

 Ramp - Here are some of its syntaxes.

RAMP AAAA

RAMP ADDRESS.TO.RAMP

The RAMP command does a series of writes to the offered address starting with all data bits turned off, incrementing the write value forwards in binary until all data bits are turned on.

 Read, Read Status - Here are some of its syntaxes.

READ A5A5

READ STATUS

READ TEST.ADDRESS

The READ command will enter the unit under tests' memory at the offered address, and place the contents of that memory into REGister E. If you specify "STATUS" as the address, the status of the unit under test is returned in REGister E. For more data on the "STATUS" lines of your test pod, read the stickers on the

front of your test pod.

 REGisters - Here are what they are.

 Here, also, is what they do.

There are 16 internal 32 bit registers. They are used to hold temporary values. Half of these registers are dedicated to the storage of various things. The programmer may use all 16 registers, but the dedicated registers will have their values changed by the micro-tester when various tests are done.

NOTE: Some of the compiler directives also modify some of the registers so be sure to read this manual carefully to know which commands use which registers otherwise you’ll get results that are confusing if you don’t know that values you place into some registers are getting over written because the compiler uses them.

 Fluke’s Registers

Dedicated REGA Stores a bit mask specified by the programmer. Also, if the UUT I/O address descriptors are invoked as default values when the I/O test is performed, the bit mask specified by the last I/O address descriptor is stored in Register A.SO WHEN YOU REQUEST AN I/O TEST ON THE UUT, YOU MUST OFFER THE BITS THAT ARE DRIVEABLE FOR THE MEMORY ADDRESS OR PORT ASSIGNMENT OF THE I/O DEVICE. THIS BIT PATTERN YOU OFFER GETS STORED INTO REGA.

Dedicated REGB Stores the last ROM signature as specified by the programmer. Also, if the UUT ROM address descriptors are invoked as default values when ROM test is performed, the ROM signature specified by the last ROM address descriptor is stored in Register B. SO IF YOU REQUEST A ROM TEST, THE SIGNATURE THAT YOU OFFERED GETS STORED INTO REGB. THIS SIGNATURE WOULD THEN BE THE DEFAULT SIGNATURE FOR MORE ROM TESTS LATER.

Dedicated REGC Stores the last status/control information specified by the programmer for the Write Control or Toggle Data Control functions, or generated by the F9010a during performance of the Read Status Function. SO WHEN A WRITE CONTROL OR TOGGLE DATA CONTROL FUNCTION GETS REQUESTED, YOU MUST OFFER THE BIT PATTERN FOR THE TEST. THIS BIT PATTERN GETS PLACED INTO REGC AND WILL BE USED FOR THE DEFAULT PATTERN FOR MORE WRITE CONTROL OR TOGGLE DATA CONTROL FUNCTIONS LATER.

Dedicated REGD Stores the last bit number specified by the programmer for the toggle address, Toggle data, or Toggle Control functions. SO WHEN A TOGGLE DATA OR A TOGGLE CONTROL FUNCTION GETS REQUESTED, YOU MUST OFFER THE BIT NUMBER THAT IS TO BE TOGGLED. THIS BIT PATTERN GETS STORED IN REGD AND WILL BE USED FOR THE DEFAULT BIT PATTERN FOR MORE TOGGLE ADDRESS/TOGGLE DATA FUNCTION REQUESTS. THE FOR/NEXT/STEP STATEMENT ALSO USES THIS REGISTER AS A COUNTER, SO YOU DON'T WANT TO USE THIS REGISTER INSIDE OF A FOR/NEXT/STEP LOOP.

Dedicated REGE Stores the last data specified by the programmer or generated by the F9010a during an operation. SO WHEN A READ FROM A MEMORY LOCATION IS REQUESTED, THE RESULT OF THE READ, THAT IS, THE DATA VALUE THAT WAS IN THE MEMORY LOCATION REQUESTED, GETS PLACED INTO REGISTER E

Dedicated REGF Stores the last address specified by the programmer or generated by the F9010a during an operation involving the interface pod. SO IF YOU REQUEST A READ OR A WRITE OR ANY OTHER FUNCTION THAT REQUIRED AN ADDRESS, THE ADDRESS YOU USED GETS STORED INTO REGF.

Dedicated REG0 Store data accumulated during the Read Probe Operation. SO WHEN YOU READ THE PROBE WITH THE READ-PROBE FUNCTION, THE RESULT OF THE READ-PROBE FUNCTION GETS PLACED INTO REG0. THIS VALUE IS A 32 BIT VALUE. DEPENDING ON IF YOUR SYNC-REQUEST IS FREE RUNNING, ADDRESS SYNC, OR DATA SYNC, THIS REGISTER WILL CONTAIN A VALUE WHICH WILL TELL YOU IF THE PROBE READ A HIGH, LOW, FLOAT, OR CLOCKING NODE. THE PROBE CAN BE USED FOR BETTER THINGS SUCH AS TRACING ADDRESS, DATA, STATUS, & CONTROL LINES.

Non-Dedicated REG1 To be used by the programmer.

Non-Dedicated REG2 To be used by the programmer.

Non-Dedicated REG3 To be used by the programmer.

Non-Dedicated REG4 To be used by the programmer.

Non-Dedicated REG5 To be used by the programmer.

Non-Dedicated REG6 To be used by the programmer.

Non-Dedicated REG7 To be used by the programmer.

Non-Dedicated REG8 To be used by the programmer.

Non-Dedicated REG9 To be used by the programmer.

THESE NINE REGISTERS DO NOT GET USED BY THE F9010A IN ANY OF THE FUNCTIONS IT DOES. THEY ARE FREE FOR THE PROGRAMMER TO USE AND YOU SHOULD NOT WORRY ABOUT THE F9010A CHANGING VALUES YOU PLACED INTO THEM. THESE REGISTERS ARE GOOD FOR THINGS LIKE SETTING A REGISTER WITH THE MEMORY BOARD NUMBER BEING TESTED, SETTING ANOTHER WITH THE MEMORY ROW NUMBER, AND STILL ANOTHER WITH THE SERIAL NUMBER OF THE BOARD. IF THE MEMORY BOARD FAILS, THE ROUTINE THAT REPORTS THE FAILURES WILL BE ABLE TO REPORT THE BOARD NUMBER AND THE ROW AT FAULT. THE COLUMN NUMBER OF THE FAILURE CAN BE DETERMINED BY READING THE RESULT OF THE FAILURE OUT OF REGE (SEE ABOVE).

 Repeat - Some of its syntaxes.

READ 0 REPEAT

WRITE A5A5 1F REPEAT REPEAT

When the REPEAT command is used, the last command executed gets repeated. You may place about 35 repeats on a single line. If you exceed this amount, the micro-tester will give you an error.

 Rom-Test - Some of its syntaxes.

ROM-TEST

ROM-TEST FE00 FFFF 179E

The ROM-TEST command will takes the address area offered then creates a signature for it. It will then compare the signature with the one you offered and report if they are not equal. If you don't offer a starting address, ANDing address, and signature, the ROM-TEST will use the default ROM attributes.

 Run, Run-UUT - Some of its syntaxes.

RUN

RUN-UUT

RUN FFFC

The RUN or RUN-UUT command allows the micro-tester to simulate the cpu chip. If you don't offer an address to start running at, the default starting address is used. The default starting address is offered by your test pod. To change it, you are able to use the "SET-UP" keys on the micro-tester.

For more information on :SETUP read the :SETUP section.

 Shift-Left - Its syntaxes.

SHIFT-LEFT REGE

This command will take the contents of the register name you offer and shift the contents left one bit.

 Shift-Right - Its syntaxes.

SHIFT-RIGHT REGE

This command will take the contents of the register name you offer and shift the contents right one bit.

 Stop - Its syntax.

STOP

This command will cause program execution to be suspended until the operator hits the CONTINUE key on the micro-tester. While the micro-tester is in the STOP mode, the STOP light will flash.

 Synchronize - Here are the allowed syntaxes

SYNCHRONIZE ADDRESS

SYNCHRONIZE DATA

SYNCHRONIZE FREE-RUN

SYNC ADDRESS

SYNC DATA

SYNC FREE-RUN

The Synchronize command allows you to synchronize the logic probe to Valid Address, Valid Data, or to Free-Running (which is an asynchronous mode). The probe will also apply stimulus according to the synchronous mode you select and if your HIGH or LOW keys are locked down on the F9010a keyboard.

 Walk - Some of its syntaxes.

WALK AAAA 8

WALK WALK.ADDRESS BIT.PATTERN

WALK A5A5 (00100000B)

The walk command will take the bit pattern you offer and write it out to the address you offer. It will then walk the bit pattern forward one bit to the left, and write it out again. It will do this until all bits have been shifted.

 Write, Write Control - Some of its syntaxes.

WRITE AAAA 1F

WRITE CONTROL 2

The write command takes the address and data value you offer and writes the value into the address. If you specify "CONTROL" as your address, the control bus is selected, using the next value as the bit pattern to write to your control bus.

Compiler Directives

:CODE - The :CODE directive.

This directive is used at the top of your source code to ask the compiler to display the source code as it compiles it. If you don’t use the :CODE directive, the object code of the compile will be shown during the compile. You should always place this directive at the first line of every workspace you compile if you want to watch its progress.

:RAM - The :RAM directive.

The :RAM directive is used to place :RAM attributes into your F9010a. You specify the starting address and ending address of RAM.

Here are some examples of how this is used:

:RAM 0000 3FFF

:RAM 4000 7FFF

:RAM 8000 BFFF

:RAM C000 FFFF

These values above are used as the default values for the RAM-LONG and RAM-SHORT test that have already been described. For more data on how to create default RAM locations, read your Fluke Manuals under “LEARN” and “VIEW”.

:ROM - The :ROM directive.

The :ROM directive is used to place :ROM attributes into your F9010a. You specify the starting address and ending address, and also the signature of the ROM for those addresses. You find the signature of the ROM with your LEARN and VIEW keys. Here are some examples:

:ROM FE00 FFFF 179E

:ROM E000 EFFF 249F

These values above are used as the default values for the ROM-TEST that has already been described. For more information on how to create default ROM locations, read your Fluke Manuals under “LEARN” and “VIEW”.

:I/O - The :I/O directive.

The :I/O directive is used to place :I/O attributes into your F9010a. You specify the starting address, ending address, and the bits that are derivable for that I/O device. Here are some examples:

:I/O FC00 FC00 1F

:I/O FC01 FC01 FF

These values above are used as the default values for the I/O-TEST that has already been described. For more information on how to make default I/O locations, read your Fluke Manuals under “LEARN” and “VIEW”.

:REM - The :REM directive.

Any code or statement which follows the :REM directive will be ignored by the compiler. It is used to allow the programmer to place in-line descriptions of the code you are writing. You should always put many :REMarks in your code for everything you do. This makes it easier for you to debug or add to your code later. It also makes for better readability.

:REMarks should be used before the start of every program module to describe what the module is going to do. If you have a section of code which would be hard to remember what is does, document the code with :REMarks.

:REMarks don’t take up any memory space in your micro-tester. They are removed at compile time from the object code, but they are left in your source code. (In fact, your source code is never touched).

:SETUP - The :SETUP directive

The :SETUP directive allows you to change the default SETUP parameters in the F9010a. You are able to change the following parameters:

TRAP FOR DATA ERROR

TRAP FOR ADDRESS ERROR

TRAP FOR CONTROL ERROR

TRAP FOR ACTIVE FORCE LINE

TRAP FOR ILLEGAL ADDRESS

TRAP FOR BAD POWER SUPPLY

SET BEEP ON OR OFF

EXERCISE ERRORS

The syntax for these setup parameters are given below. Note that you may use the keyword “YES” or “ON” for a true parameter or “NO” or “OFF” for a false parameter. In the following examples, you will find that both get used freely. THESE FORMATS FOR THE :SETUP’s MUST BE USED EXACTLY AS THEY ARE USED HERE.

SETUP DATA ERROR YES

SETUP DATA ERROR ON

SETUP DATA ERROR NO

SETUP DATA ERROR OFF

For trapping DATA ERRORS. The first two examples will enable the trapping of data errors. The last two examples will disable the trap-ping of data errors; used when you wish to ignore data errors.

:SETUP ADDRESS ERROR YES

:SETUP ADDRESS ERROR ON

:SETUP ADDRESS ERROR NO

:SETUP ADDRESS ERROR OFF

For trapping ADDRESS ERRORS. The first two examples will enable the trapping of address errors. The last two examples will disable the trapping of address errors; used when you wish to ignore address errors.

:SETUP CONTROL ERROR YES

:SETUP CONTROL ERROR ON

:SETUP CONTROL ERROR NO

:SETUP CONTROL ERROR OFF

For trapping CONTROL ERRORS. The first two examples will enable the trapping of control errors. The last two examples will disable the trapping of control errors; used when you wish to ignore control errors.

Control errors are offered by the F9010a when a control line is found to be not derivable. In the case of an active RESET, you may wish to ignore it to start the isolation of faults.

:SETUP ACTIVE FORCE YES

:SETUP ACTIVE FORCE ON

:SETUP ACTIVE FORCE NO

:SETUP ACTIVE FORCE OFF

For trapping ACTIVE FORCE LINES. The first two examples will enable the trapping of active force lines. The last two examples will disable the trapping of active force lines; used when you want to ignore active force lines.

The F9010a will report an error if it finds an active force line. It will also report on what force line was found to be active. In the case of an active RESET, you may wish to ignore it to start the isolation of faults.

:SETUP ACTIVE INTERRUPT YES

:SETUP ACTIVE INTERRUPT ON

:SETUP ACTIVE INTERRUPT NO

:SETUP ACTIVE INTERRUPT OFF

For trapping ACTIVE INTERRUPTs. The first two examples will enable the trapping of active interrupts. The last two examples will disable the trapping of active interrupts; used when you want to ignore active interrupts.

The F9010a will report an error when an interrupt is being requested of the CPU chip the test pod is replacing. You may wish to have the micro-tester ignore an interrupt so that the cause of the interrupt may be isolated.

:SETUP ILLEGAL ADDRESS YES

:SETUP ILLEGAL ADDRESS ON

:SETUP ILLEGAL ADDRESS NO

:SETUP ILLEGAL ADDRESS OFF

For trapping ILLEGAL ADDRESSes. The first two examples will enable the trapping of illegal addresses. The last two examples will disable the trapping of illegal addresses. If you offer a bad address that is not accessible by the micro-tester, the F9010a will report an error. You may wish to have this ignored.

:SETUP BAD POWER YES

:SETUP BAD POWER ON

:SETUP BAD POWER NO

:SETUP BAD POWER OFF

For trapping BAD POWER supply. The first two examples will enable the trapping of bad power supply. The last two examples will disable the trapping of bad power supply. There are some cases where you have an under-power condition, or an over-power condition. Both conditions should be looked into before you attempt to trouble-shoot, however, you may ignore the problem to trouble-shoot the computer. In the case where the unit under test has enough power to operate fully without causing damage to itself or the micro-tester and pod, when you disable this attribute, you are able to continue testing with an under-voltage or an over-voltage.

:SETUP BEEP YES

:SETUP BEEP ON

:SETUP BEEP NO

:SETUP BEEP OFF

For turning the BEEP on or off. The first two examples will enable the beep on error transition feature. The last two examples will disable the beep on error transition feature. When the micro-tester has a transition from a fault to a non-fault, or from a non-fault to a fault, the micro-tester will beep. In the case of a memory fault which is exhibiting faults and non-faults very quickly, you may annoy other people with your constant beeping. Disable the beep and you will still be able to see that the problem continues to toggle on the F9010a’s display. After the fault has been repaired, the beep feature can be enabled again.

:SETUP EXERCISE ERRORS YES

:SETUP EXERCISE ERRORS ON

:SETUP EXERCISE ERRORS NO

:SETUP EXERCISE ERRORS OFF

For selecting or deselecting EXERCISE ERRORS. The first two examples will select the exercise of errors. The last two examples will disable the exercise of errors. You may select the LOOP ON ERROR feature or deselect it. When an error is located, the F9010a will ask you if you want to loop on it. If you never want to loop on an error, a disable of this feature will cause the F9010a to not ask you this question. You may, however, hit your LOOP key on the micro-tester to loop on the error.

While YES/ON, NO/OFF may be used freely it is best to use the keyword which makes the best syntax for readability.

The SETUP’s are fully documented in your Fluke Manuals, and you need to read them to see the other setup parameters that may be changed with the F9010a keyboard.

How To Use Your VIEW Keys

The F9010a keyboard has four keys located on the upper left-hand side of the keyboard, which enable you to have the micro-tester look for ROM, RAM, and I/O inside of your Unit Under Test. To display the information it finds, use the “VIEW” area, and hit “ROM” to view ROM, “RAM” to view RAM, and “I/O” to view I/O. If more than one block of ROM, RAM, or I/O was located, the “MORE” light will light, which is asking you to hit the “MORE” key to display the next attribute. If you want to view one of the attributes you displayed before, hit your “PRIOR” key.

You may add or delete attributes from the micro-tester. To remove an attribute, hit the VIEW-ROM, VIEW-RAM, or VIEW-I/O key. Hit the “MORE” key until the attribute you want to delete is showing on the display. Then hit your DELETE/NO key. To add an attribute is much the same way. You hit VIEW-ROM, VIEW-RAM, or VIEW-I/O, then hit the “ENTER/YES” key. You are then requested to enter the addresses and other information for that attribute.

These attributes will then be saved to the tape if you request the write-to-tape function. The attributes can then be used as default values for ROM-TEST, RAM-SHORT, RAM-LONG, and I/O-TEST.

See also :ROM, :RAM, and :I/O for more information on attributes.

The use of the VIEW and LEARN keys are documented in your Fluke Manuals, and you should read them also.

How IBMFLUKE Works

IBMFLUKE.EXE is the program that comes with this compiler that enables you to transfer workspaces from the F9010a to the IBM compatible or from the IBM compatible to the F9010a.

You use the IBMFLUKE program by entering its name, and then the name of the .FLK file you want to transmit. An example of this would be:

A0>IBMFLUKE MEMORY (return)

The above will run program IBMFLUKE, and the file name to use will be “MEMORY.FLK”. (Note that the .FLK is not required. If you attempt to offer a file name with another extension type, the program will abort with an error).

The file “MEMORY.FLK” need not exist yet to run the program unless you select an option which tries to transmit a workspace to the F9010a. (You can’t transmit a file that doesn’t exist). If you are going to receive a workspace from the F9010a, the file name will be created before it accepts any data. If the file name already exists, and you are going to dump data into the existing file, the IBMFLUKE program will abort with an error.

You are given the following options:

1) Transmit a workspace from the IBM compatible to the F9010a

2) Receive a workspace from the F9010a

3) Change from :COM1/:COM2 port to :COM2/:COM1 port

4) Transmit a workspace to the F9010a when called

5) Change the baud rate

Option 1: Transmit A Workspace To The F9010a

Make certain that the F9010a is waiting to receive the data as it gets sent. Do this by hitting your AUX/IF key, READ key, and then the ENTER/YES key. The F9010a will then be in the waiting state.

When you enter the number “1” to start this option, the workspace will get transmitted the second you hit it. When it is done, the number of bytes transmitted to show, and you are returned to the operating system.

Option 2: Receive A Workspace

When you select this option, the computer will wait for the F9010a to send its workspace. It placed the data it receives into the file name you offered at the A0>. When the data stops, the file gets closed and you are returned to the operating system.

Option 3: Change Com Port Assignment

If you would like to change the :COM port assignment from :COM1 to :COM2 or from :COM2 to :COM1, this option will do it. It will ask you to enter 1 or 2. After you enter the new :COM port assignment, the computer will record your choice and use it the next time you use IBMFLUKE. You will then be returned to the menu.

Note that when you enter the new :COM port assignment, do not hit your [RETURN] key.

Option 4: Transmit When Called

The “Transmit When Called” feature allows you to start the file transfer on the computer, walk over to the micro-tester, and request the start of the dump from there. To do this, you hit the AUX/IF key, the READ, and then the ENTER/YES key. The F9010a will send a request to send character which the computer will see and start the dump.

The screen will ask you to hit the proper keys on the F9010a. When the transmission is done, you are returned to the operating system.

Option 5: Change Baud Rate

You change the baud rate by selecting one of the following:

1 ... 300 baud

2 ... 600 baud

3 ... 1200 baud

4 ... 2400 baud

5 ... 4800 baud

6 ... 9600 baud

After you have entered the number for the new baud rate you want, the computer will record your new baud rate, and use it for the next time you use IBMFLUKE. You will then be returned to the main menu.

Note that when you enter the number for the new baud rate, do not hit your [RETURN] key.

A Word About File Transfer Speeds

Depending on the computer you are using to talk to the F9010a, you may need to use a slower baud rate other than 9600. You will need to test your computer with your F9010a and see what is the best “SAFE” speed. To do this, transmit and receive the same file back and forth and see if the micro-tester rejects your transmission on about the 10’th time you send it. This will enable you to see if your computer is loosing data as the file gets worse.

IBMFLUKE has been working at 9600 baud on the Compaq (t) DeskPro with no data dropouts.

A Word About Copyrights

This product is a copyright of Stargoat Industries and all rights are reserved. Permission is granted for the non-commercial dissemination and distribution of this product provided neither the executable, the source code, nor the documentation is altered to violate Stargoat’s copyright.

Updates to this program can be acquired by contacting the author, Fredric L. Rice, at The Skeptic Tank through e-mail at frice@skeptictank.org and in addition, sample programs which use this compiler may be requested.

A Sample Source Code File MEMORY.DAT

Here’s a sample program that tests some memory. Later you’ll see the tokenized code which the compiler produces that gets loaded to the Fluke tester.

:code

:setup bad power off

:setup active force off

:setup active interrupt off

:setup beep on

/* **

 * memory board report. *

 * *

 * program 0 assigns variables for module 1. *

 * program 1 tests the memory. *

 * *

 **

 **

 * define the macros being used. *

 * *

 ** */

:rem Delay about 5 seconds before returning. This module is for the

:rem reading of the bad contacts finder in module 1.

:macro sleep

 ramp a5a5 repeat repeat repeat repeat repeat

:endmacro

:rem Check memory by writing a high into memory at reg8 or offset.

:rem (Offset value is passed in a macro parameter called OFFSET.VALUE).

:macro check.high #offset.value

 write reg8 or offset.value high

 read reg8 or offset.value

 compliment rege | rege = rege and high

 if rege > low goto 2

:endmacro

:rem As with the previous macro, we will be checking memory but this

:rem time we will be writing a low out to memory then checking it again.

:macro check.low #offset.value

 write reg8 or offset.value low

 read reg8 or offset.value

 if rege > low goto 1

:endmacro

/* ***

 * equate the programs entry points. *

 * *

 *** */

:equate entry.point as :next

:equate check.memory as :next

:equate ram.shorting as :next

:equate dump.message as :next

:equate screen.clear as :next

:equate offer.cpu.bits as :next

:rem Video status is memory mapped at address fc00 and video data

:rem is memory mapped at address fc01. Here we equate them to

:rem variable names to upgrade the readability of the code.

:variable video.status as fc00

:variable video.data as fc01

:variable low as 0

:variable high as ff

/* **

 * Equate the status signals of the Z80 pod with the numeric
 *

 * values that represent them. This is used in the pre-test
 *

 * module that reads the status register and compares the bits
*

 * within it against these variables to see if something is
 *

 * active. If it is active, the pre-tester publishes a message.
*

 * *

 ** */

:variable power.fail with (10000000b)

:variable reset with (00010000b)

:variable interupt.request with (00001000b)

:variable nonmaskable.interrupt with (00000100b)

:variable ready.signal with (00000001b)

:rem ***

:rem * main entry point. *

:Rem
* Define where rom, and ram is located on an Ohio Scientific.
*

:rem * *

:rem ***

:rom fe00 ffff 179e

:ram 0000 3fff

:ram 4000 7fff

:ram 8000 bfff

/* **

 * reg8 is the address to check *

 * reg9 is the board number being tested *

 * rega is the row number being tested *

 * regb is 0 if no faults 1 if one or more boards require repair *

 * regc is 1 yes, 0 no for ram-short of memory boards pass prelim *

 * regd is 1 for yes, 0 no for run unit under test after pass *

 * *

 ** */

:program entry.point

 execute screen.clear

 execute offer.cpu.bits

 regb = 0

 display do ram-short if pass?c

 display do run-uut if pass?d

label 4

 aux | aux - memory board testing report -

 display - memory test being run -

:rem ***

:rem * reset the video input/output chip *

:rem * write 3, b5, to program the 6850 chip *

:rem * *

:rem ***

 write video.status 03 | write video.status b5

 read video.status | if rege and 82 = 82 goto 0

 display video chip wont program $e

 aux video chip wont program we get $e

label 0

 aux | aux - board 1 being tested -

 reg9 = 1 | read 0000 | rega = rege

 :sleep

 read 0000 | if rege = rega goto 1 | goto f

label 1

 rega = 1 | reg8 = 0000 | execute check.memory

 rega = 2 | reg8 = 1000 | execute check.memory

 rega = 3 | reg8 = 2000 | execute check.memory

 rega = 4 | reg8 = 3000 | execute check.memory

 aux - board 2 being tested -

 reg9 = 2 | read 4000 | rega = rege

 :sleep

 read 4000 | if rega = rege goto 2 | goto f

label 2

 rega = 1 | reg8 = 4000 | execute check.memory

 rega = 2 | reg8 = 5000 | execute check.memory

 rega = 3 | reg8 = 6000 | execute check.memory

 rega = 4 | reg8 = 7000 | execute check.memory

 aux - board 3 being tested -

 reg9 = 3 | read 8000 | rega = rege

 :sleep

 read 8000 | if rege = rega goto 3 | goto f

label 3

 rega = 1 | reg8 = 8000 | execute check.memory

 rega = 2 | reg8 = 9000 | execute check.memory

 rega = 3 | reg8 = a000 | execute check.memory

 rega = 4 | reg8 = b000 | execute check.memory

 aux | aux - done with memory board testing. result are above -

 display - done - | execute ram.shorting | stop

:rem ***

:rem * enter here when a number is read twice and *

:rem * two different numbers are aquired. there is *

:rem * a possible bad connetction on the board *

:rem * *

:rem ***

label f

 aux

 aux board number @9 looks like it has bad contacts with

 aux the motherboard. i am not getting a solid fault

 aux reading on. check and tighten contacts, then rerun

 aux this test by hitting cont

 aux

 display please read printer | stop | goto 4

:program check.memory

 :check.low 000

 :check.low 100

 :check.low 200

 :check.low 300

 :check.low 400

 :check.low 500

 :check.low 600

 :check.low 700

 :check.low 800

 :check.low 900

 :check.low a00

 :check.low b00

 :check.low c00

 :check.low d00

 :check.low e00

 :check.low f00

 :check.high 000

 :check.high 100

 :check.high 200

 :check.high 300

 :check.high 400

 :check.high 500

 :check.high 600

 :check.high 700

 :check.high 800

 :check.high 900

 :check.high a00

 :check.high b00

 :check.high c00

 :check.high d00

 :check.high e00

 :check.high f00

 goto 3

label 1

:rem ***

:rem * bits failed at low bit test *

:rem * *

:rem ***

 aux address $f, board $9, row $a, bits are not low, pattern $e, chips +

 display $f $9 $a $e

 goto 4

label 2

:rem ***

:rem * bits failed at high bit test *

:rem * *

:rem ***

 aux address $f, board $9, row $a, bits are not high, pattern $e, chips +

 display $f $9 $a $e

:rem ***

:rem * display the chip numbers that are in the pattern *

:rem * *

:rem ***

label 4

 regb = 1

 reg1 = rege

 reg2 = 1

 reg3 = 1

label 7

 reg4 = rege and reg2

 if reg4 = reg2 goto 5

label 8

 increment reg3

 shift-left reg2

 if reg3 = 9 goto 6

 goto 7

label 5

 aux $3, +

 display + $3

 goto 8

label 6

 aux

label 3

/* **

 * This module will execute a ram-short on each board one at a time.
*

 * There are three memory boards. After it passes, (if it passes), it *

 * will execute a ram-long test on the first 51 memory address of *

 * each board to detect any pattern sensitivity problems within those *

 * memory cells. *

 * *

 ** */

:program ram.shorting

 if regc = low goto 1 | if regb = 1 goto 1

 aux - testing with ram-short -

 display ram-short board 1 | aux - ram-short board 1 - | ram-short 0000 3fff

 display ram-short board 2 | aux - ram-short board 2 - | ram-short 4000 7fff

 display ram-short board 3 | aux - ram-short board 3 - | ram-short 8000 bfff

 display ram-long 0000 0050 | aux ram-long 0000 0050 | ram-long 0000 0050

 display ram-long 4000 4050 | aux ram-long 4000 4050 | ram-long 4000 4050

 display ram-long 8000 8050 | aux ram-long 8000 8050 | ram-long 8000 8050

 aux - testing done - | display - ram-short done -

 if regd = low goto 1 | run | display running unit under test

label 1

:rem ***

:rem * terminate execution because of a failure in previous test *

:rem * *

:rem ***

:rem ***

:rem * clear the screen by dumping some line feeds to it. *

:rem * *

:rem ***

:program screen.clear

 :for reg0 = 1 to 25# at 0

 aux

 :next

:rem ***

:rem * here we will display the active signals. *

:rem * *

:rem ***

:program offer.cpu.bits

 read status

 reg1 = regc and power.fail

 reg2 = regc and reset

 reg3 = regc and interupt.request

 reg4 = regc and nonmaskable.interrupt

 reg5 = regc and ready.signal

 if reg1 = power.fail goto 1

label 7

 if reg2 = 0 goto 2

label 8

 if reg3 = 0 goto 3

label 9

 if reg4 = 0 goto 4

label a

 if reg5 = ready.signal goto 5

 goto 6

label 1

 aux unit under test is in a power fail condition #

 goto 7

label 2

 aux unit under test is in a reset condition #

 goto 8

label 3

 aux unit under test is in an interupt request condition #

 goto 9

label 4

 aux unit under test is in a nonmaskable interrupt condition #

 goto a

label 5

 aux unit under test is ready

label 6
A Sample Fluke Tokenized File After Compilation

Here’s the above program after it gets compiled. This code is then loaded to the Fluke 9010a Digital Trouble Shooter using FLUKE.COM (For Z80 CP/M machines) or IBMFLUKE.EXE (for IBMs.)

Much of the information about these opcodes can be found in the back of one of John Fluke Manufacturing’s manuals however there are some mistakes in the manual which -- if you ever reference their information -- you need to look out for. During the development of this compiler, I created code on the F9010a and then sent the opcodes to a CP/M machine to look at to see what the tokens actually looked like.

:016768

:030104

:040105

:19000000FE0000FFFF0300000000009E170000CD

:19000000000000FF3F0200000000000000000059

:19000000400000FF7F02000000000000000000D9

:19000000800000FFBF0200000000000000000059

:1A001A

:5337041C*AA

:37051C*58

:440B001C*6B

:3EC4CFA0D2C1CDADD3C8CFD2D4A0C9C6A0D0C1D3D3BFC374*8A

:3EC4CFA0D2D5CEADD5D5D4A0C9C6A0D0C1D3D3BFC474*0E

:2B04*2F

:3F74*B3

:3FADA0CDC5CDCFD2D9A0C2CFC1D2C4A0D4C5D3D4C9CEC7A0D2C5D0CFAB74*20

:3FD2D4A0AD74*A6

:3EADA0CDC5CDCFD2D9A0D4C5D3D4A0C2C5C9CEC7A0D2D5CEA0AD74*9F

:200F0C00001C00031C*76

:200F0C00001C0B051C*83

:1F0F0C00001C*56

:2D380E3008022F08022C00*12

:3ED6C9C4C5CFA0C3C8C9D0A0D7CFCED4A0D0D2CFC7D2C1CDA0A4C574*96

:3FD6C9C4C5CFA0C3C8C9D0A0D7CFCED4A0D0D2CFC7D2C1CDA0D7C5A0AB74*15

:3FC7C5D4A0A4C574*1C

:2B00*2B

:3F74*B3

:3FADA0C2CFC1D2C4A0B1A0C2C5C9CEC7A0D4C5D3D4C5C4A0AD74*74

:4409011C*6A

:1F000000001C*3B

:440A380E1C*B0

:210A050A051C2626262626*19

:1F000000001C*3B

:2D380E2F380A2C01*11

:2C0F*3B

:2B01*2C

:440A011C*6B

:4408000000001C*68

:37011C*54

:440A021C*6C

:4408010000001C*69

:37011C*54

:440A031C*6D

:4408020000001C*6A

:37011C*54

:440A041C*6E

:4408030000001C*6B

:37011C*54

:3FADA0C2CFC1D2C4A0B2A0C2C5C9CEC7A0D4C5D3D4C5C4A0AD74*75

:4409021C*6B

:1F040000001C*3F

:440A380E1C*B0

:210A050A051C2626262626*19

:1F040000001C*3F

:2D380A2F380E2C02*12

:2C0F*3B

:2B02*2D

:440A011C*6B

:4408040000001C*6C

:37011C*54

:440A021C*6C

:4408050000001C*6D

:37011C*54

:440A031C*6D

:4408060000001C*6E

:37011C*54

:440A041C*6E

:4408070000001C*6F

:37011C*54

:3FADA0C2CFC1D2C4A0B3A0C2C5C9CEC7A0D4C5D3D4C5C4A0AD74*76

:4409031C*6C

:1F080000001C*43

:440A380E1C*B0

:210A050A051C2626262626*19

:1F080000001C*43

:2D380E2F380A2C03*13

:2C0F*3B

:2B03*2E

:440A011C*6B

:4408080000001C*70

:37011C*54

:440A021C*6C

:4408090000001C*71

:37011C*54

:440A031C*6D

:44080A0000001C*72

:37011C*54

:440A041C*6E

:44080B0000001C*73

:37011C*54

:3F74*B3

:3FADA0C4CFCEC5A0D7C9D4C8A0CDC5CDCFD2D9A0C2CFC1D2C4A0D4C5AB74*E7

:3FD3D4C9CEC7AEA0D2C5D3D5CCD4A0C1D2C5A0C1C2CFD6C5A0AD74*B7

:3EADA0C4CFCEC5A0AD74*72

:37021C*55

:28*28

:2B0F*3A

:3F74*B3

:3FC2CFC1D2C4A0CED5CDC2C5D2A0C0B9A0CCCFCFCBD3A0CCC9CBC5A0AB74*D5

:3FC9D4A0C8C1D3A0C2C1C4A0C3CFCED4C1C3D4D3A0D7C9D4C874*0E

:3FD4C8C5A0CDCFD4C8C5D2C2CFC1D2C4AEA0C9A0C1CDA0CECFD4A0C7AB74*D3

:3FC5D4D4C9CEC7A0C1A0D3CFCCC9C4A0C6C1D5CCD474*16

:3FD2C5C1C4C9CEC7A0CFCEAEA0C3C8C5C3CBA0C1CEC4A0D4C9C7C8D4AB74*D4

:3FC5CEA0C3CFCED4C1C3D4D3ACA0D4C8C5CEA0D2C5D2D5CE74*6C

:3FD4C8C9D3A0D4C5D3D4A0C2D9A0C8C9D4D4C9CEC7A0C3CFCED474*11

:3F74*B3

:3ED0CCC5C1D3C5A0D2C5C1C4A0D0D2C9CED4C5D274*6C

:28*28

:2C04*30

:5000E300012B0102A901032702043B000FAA02$32

:1A011B

:53203808310000001C001C*1C

:1F3808310000001C*AC

:2D380E2E002C01*CE

:203808310100001C001C*CA

:1F3808310100001C*AD

:2D380E2E002C01*CE

:203808310200001C001C*CB

:1F3808310200001C*AE

:2D380E2E002C01*CE

:203808310300001C001C*CC

:1F3808310300001C*AF

:2D380E2E002C01*CE

:203808310400001C001C*CD

:1F3808310400001C*B0

:2D380E2E002C01*CE

:203808310500001C001C*CE

:1F3808310500001C*B1

:2D380E2E002C01*CE

:203808310600001C001C*CF

:1F3808310600001C*B2

:2D380E2E002C01*CE

:203808310700001C001C*D0

:1F3808310700001C*B3

:2D380E2E002C01*CE

:203808310800001C001C*D1

:1F3808310800001C*B4

:2D380E2E002C01*CE

:203808310900001C001C*D2

:1F3808310900001C*B5

:2D380E2E002C01*CE

:203808310A00001C001C*D3

:1F3808310A00001C*B6

:2D380E2E002C01*CE

:203808310B00001C001C*D4

:1F3808310B00001C*B7

:2D380E2E002C01*CE

:203808310C00001C001C*D5

:1F3808310C00001C*B8

:2D380E2E002C01*CE

:203808310D00001C001C*D6

:1F3808310D00001C*B9

:2D380E2E002C01*CE

:203808310E00001C001C*D7

:1F3808310E00001C*BA

:2D380E2E002C01*CE

:203808310F00001C001C*D8

:1F3808310F00001C*BB

:2D380E2E002C01*CE

:203808310000001C0F0F1C*E7

:1F3808310000001C*AC

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310100001C0F0F1C*E8

:1F3808310100001C*AD

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310200001C0F0F1C*E9

:1F3808310200001C*AE

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310300001C0F0F1C*EA

:1F3808310300001C*AF

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310400001C0F0F1C*EB

:1F3808310400001C*B0

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310500001C0F0F1C*EC

:1F3808310500001C*B1

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310600001C0F0F1C*ED

:1F3808310600001C*B2

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310700001C0F0F1C*EE

:1F3808310700001C*B3

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310800001C0F0F1C*EF

:1F3808310800001C*B4

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310900001C0F0F1C*F0

:1F3808310900001C*B5

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310A00001C0F0F1C*F1

:1F3808310A00001C*B6

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310B00001C0F0F1C*F2

:1F3808310B00001C*B7

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310C00001C0F0F1C*F3

:1F3808310C00001C*B8

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310D00001C0F0F1C*F4

:1F3808310D00001C*B9

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310E00001C0F0F1C*F5

:1F3808310E00001C*BA

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:203808310F00001C0F0F1C*F6

:1F3808310F00001C*BB

:360E*44

:440E380E300F0F1C*02

:2D380E2E002C02*CF

:2C03*2F

:2B01*2C

:3FC1C4C4D2C5D3D3A0A4C6ACA0C2CFC1D2C4A0A4B9ACA0D2CFD7A0A4AB74*27

:3FC1ACA0C2C9D4D3A0C1D2C5A0CECFD4A0CCCFD7ACA0D0C1D4D4C5D2AB74*D4

:3FCEA0A4C5ACA0C3C8C9D0D3A0AB74*18

:3EA4C6A0A4B9A0A4C1A0A4C574*27

:2C04*30

:2B02*2D

:3FC1C4C4D2C5D3D3A0A4C6ACA0C2CFC1D2C4A0A4B9ACA0D2CFD7A0A4AB74*27

:3FC1ACA0C2C9D4D3A0C1D2C5A0CECFD4A0C8C9C7C8ACA0D0C1D4D4C5AB74*B0

:3FD2CEA0A4C5ACA0C3C8C9D0D3A0AB74*EA

:3EA4C6A0A4B9A0A4C1A0A4C574*27

:2B04*2F

:440B011C*6C

:4401380E1C*A7

:4402011C*63

:4403011C*64

:2B07*32

:4404380E3038021C*14

:2D38042F38022C05*03

:2B08*33

:3403*37

:3202*34

:2D38032F092C06*D2

:2C07*33

:2B05*30

:3FA4B3ACA0AB74*01

:3EABA0A4B374*54

:2C08*34

:2B06*31

:3F74*B3

:2B03*2E

:5001D50302310403D504048C0405C00406D104079F0408B104$DB

:1A021C

:532D380C2F002C01*20

:2D380B2F012C01*CD

:3FADA0D4C5D3D4C9CEC7A0D7C9D4C8A0D2C1CDADD3C8CFD2D4A0AD74*84

:3ED2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B174*A8

:3FADA0D2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B1A0AD74*43

:18000000001C030F0F0F1C*80

:3ED2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B274*A9

:3FADA0D2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B2A0AD74*44

:18040000001C070F0F0F1C*88

:3ED2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B374*AA

:3FADA0D2C1CDADD3C8CFD2D4A0C2CFC1D2C4A0B3A0AD74*45

:18080000001C0B0F0F0F1C*90

:3ED2C1CDADCCCFCEC7A0B0B0B0B0A0B0B0B5B074*B4

:3FD2C1CDADCCCFCEC7A0B0B0B0B0A0B0B0B5B074*B5

:17000000001C000005001C*54

:3ED2C1CDADCCCFCEC7A0B4B0B0B0A0B4B0B5B074*BC

:3FD2C1CDADCCCFCEC7A0B4B0B0B0A0B4B0B5B074*BD

:17040000001C040005001C*5C

:3ED2C1CDADCCCFCEC7A0B8B0B0B0A0B8B0B5B074*C4

:3FD2C1CDADCCCFCEC7A0B8B0B0B0A0B8B0B5B074*C5

:17080000001C080005001C*64

:3FADA0D4C5D3D4C9CEC7A0C4CFCEC5A0AD74*B1

:3EADA0D2C1CDADD3C8CFD2D4A0C4CFCEC5A0AD74*2F

:2D380D2F002C01*CE

:291C*45

:3ED2D5CECEC9CEC7A0D5CEC9D4A0D5CEC4C5D2A0D4C5D3D474*B1

:2B01*2C

:5001AD01$FF

:1A041E

:534400011C*B4

:440D01091C*77

:2B00*2B

:3F74*B3

:3400*34

:350D*42

:2D380D2E2F012C00*FC

:50000C00$5C

:1A051F

:531F1E*90

:4401380C3008001C*DD

:4402380C3001001C*D7

:4403380C3000081C*DF

:4404380C3000041C*DC

:4405380C3000011C*DA

:2D38012F08002C01*CA

:2B07*32

:2D38022F002C02*C4

:2B08*33

:2D38032F002C03*C6

:2B09*34

:2D38042F002C04*C8

:2B0A*35

:2D38052F00012C05*CB

:2C06*32

:2B01*2C

:3FD5CEC9D4A0D5CEC4C5D2A0D4C5D3D4A0C9D3A0C9CEA0C1A0D0CFD7AB74*06

:3FC5D2A0C6C1C9CCA0C3CFCEC4C9D4C9CFCEA0A374*10

:2C07*33

:2B02*2D

:3FD5CEC9D4A0D5CEC4C5D2A0D4C5D3D4A0C9D3A0C9CEA0C1A0D2C5D3AB74*FA

:3FC5D4A0C3CFCEC4C9D4C9CFCEA0A374*56

:2C08*34

:2B03*2E

:3FD5CEC9D4A0D5CEC4C5D2A0D4C5D3D4A0C9D3A0C9CEA0C1CEA0C9CEAB74*F5

:3FD4C5D2D5D0D4A0D2C5D1D5C5D3D4A0C3CFCEC4C9D4C9CFCEA0A374*EA

:2C09*35

:2B04*2F

:3FD5CEC9D4A0D5CEC4C5D2A0D4C5D3D4A0C9D3A0C9CEA0C1A0CECFCEAB74*FB

:3FCDC1D3CBC1C2CCC5A0C9CED4C5D2D2D5D0D4A0C3CFCEC4C9D4C9CFAB74*84

:3FCEA0A374*C4

:2C0A*36

:2B05*30

:3FD5CEC9D4A0D5CEC4C5D2A0D4C5D3D4A0C9D3A0D2C5C1C4D974*42

:2B06*31

:50015C0002930003C500040301054801066401073500083E000947000A5000$F7

:00

Compilation Notes

This is a two-pass compiler. The first pass through your source code looks for MACROs that you have defined. A temporary file called MACRO.SYM gets created during this pass and the compiler will use it when it needs to examine what the expanded MACROs look like. In the event your compile dies due to a syntax error or other program, this file is left sitting in your directory so that you can perhaps use it to debug your code. If the compile is successful, this temporary file is deleted.

